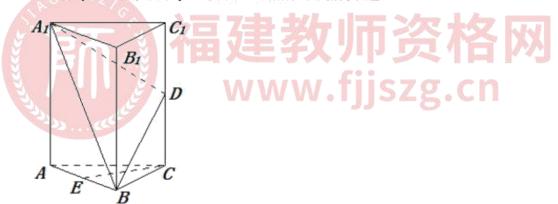
全国教师资格统考《数学学科知识与能力(初中)》模拟 试卷一


34 - T M. IT OT	(本颗共8颗,		
 HI 16-22-73-26	7 TO 96 TO 96	100 AL PO F 43	TT 10 43 1
 44 10117673-711	U /TV 7 1 - 1 2 7 .	7747 L THE 1 TH 1 -	

	1. 若 ΔABC 的内角 A 、 B 、 C 所对的边	la、b、c满足(a+	b) $^2 - c^2 = 4$, $\coprod C = 60^\circ$,则 ab 的值为			
1).						
	A. $\frac{4}{3}$ B. $8-4\sqrt{3}$	C. 1	D. $\frac{2}{3}$				
	2. 下列有关函数单调性的说法,不正确	角的是().					
	A. 若 $f(x)$ 为增函数, $g(x)$ 为增函数,	,则 $f(x) + g(x)$ 为	增函数				
	B. 若 $f(x)$ 为减函数, $g(x)$ 为减函数,	则 $f(x)+g(x)$ 为	减函数				
	C. 若 $f(x)$ 为增函数, $g(x)$ 为减函数,则 $f(x)+g(x)$ 为增函数						
	D. 若 $f(x)$ 为减函数, $g(x)$ 为增函数,	,则 $f(x)+g(x)$ 为	减函数				
	3. 求方程 $\frac{dy}{dx} = e^x y$ 的通解(). A. $y = Ce^{e^x}$ B. $y = e^{e^x}$	5. ±//- il:	I >/r 4/2	. 2. 2			
	4. $\lim_{x \to 2} \left(\frac{4}{x^2 - 4} - \frac{1}{x - 2} \right) = ($	ww.f	ijszg.cr	1			
	1	_ 1	-				
	A. -1 B. $-\frac{1}{4}$	C. $\frac{-}{4}$	D. 1				
	5. 曲线 $y = x^3 - x - 1$ 的一条切线垂直于直线 $x + 2y - 1 = 0$,则切点 P0 的坐标为()						
	A. (1, -1)	B. (-1,-1)可	₹(1, −1)				
	C. $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4} - 1)$ $= \frac{1}{2}(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{4} - 1)$	D. (-1, -1)	ij				
	6. 设A为n阶矩阵,对矩阵A作若干次初等变换得到矩阵B,那么必有()						
	$A. \mid A \mid = \mid B \mid$	B. 若 A	=0,则 B =0				
	C. $ A \neq B $	D. 若 A	>0,则 B >0				
7. 杨老师在教学《平行四边形的面积》一课的最后环节,不仅让学生强化记忆了平行四边形的面							
积约	积公式,还结合板书引导学生对公式的推导过程进行回顾反思. 对其评价不恰当的是()						

- A. 关注知识技能目标的实现
- B. 关注体现评价方式多样化
- C. 关注基本数学思想方法渗透
- D. 注重帮助学生形成,回顾反思的学习习惯
- 8. 下列行为属于落实数学思考目标的是()
- A. 初步行成评价与反思的意识
- B. 体会数学的特点,了解数学的价值
- C. 体会统计分析的意义,发展数据分析概念
- D. 经历数学代数嗯抽象,运算与建模等过程
- 二、解答题(本大题共5小题,每小题7分,共35分)

9. 已知
$$\cos x = \frac{3}{5}$$
, $x \in (-\frac{\pi}{2},0)$, 求 $\begin{vmatrix} \sin x & \cos x \\ 1 & 1 \end{vmatrix}$.

- 10. 如图,在三棱柱 ABC- ABC_1 中, Δ ABC 是边长为 2 的等边三角形, AA_1 平面 ABC,点 E 是 AB 的中点,CE // 平面 ABD .
 - (1) 求证: 点 D 是 CC 的中点;
 - (2) 若 A D-BD, 求平面 ABD 与平面 ABC 所成二面角的余弦值.

11. 设向量组 $\alpha_1=(1,0,1)^T$, $\alpha_2=(0,1,1)^T$, $\alpha_3=(1,3,5)^T$ 不能由向量组 $\beta_1=(1,1,1)^T$, $\beta_2=(1,2,3)^T$, $\beta_3=(3,4,a)^T$ 线性表示.

- (1) 求a的值;
- (2) 将 β₁, β₂, β₃ 用 α₁, α₂, α₃ 线性表示.

- 12. 如何理解符号意识?并简述如何培养学生符号意识.
- 13. 如何在数学教学中贯彻巩固与发展原则.
- 三、解答题(本大题1小题,10分)
- 14. 证明: $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}, -1 < x < 1$.
- 四、论述题(本大题1小题,15分)
- 15. 简要论述数学教学方法的选择依据.
- 五、案例分析题(本大题1小题,20分)阅读案例,并回答问题。
- 16. 关于"加减消元法"有如下教学片段,请进行分析.
- "我们的小世界杯"足球赛规定: 胜一场得 3 分,平一场得 1 分,负一场得 O 分."勇士"队赛了 9 场,共得 17 分. 已知这个队只输 2 场,那么胜了几场?又平了几场呢?

解:设"勇士"队胜了x场,平了y场.

根据得分的总场次所提供的等量关系有方程x+y=7. ①

根据得分的总数所提供的等量关系有方程 3x+y=17. ②

由②一①得 2x=10, x=5. 代入①得 y=2.

答:"勇士"队胜了5场,平了2场.

这个解法步骤完整、计算准确、书写规范,可是学生问:为什么①式的赛场数与②式的得分数能够相减?是学生在"单位"问题上钻牛角尖了吗?如果你是教师,你是回答还是不回答?是从教学上回答还是从数学上回答?

六、教学设计(本大题1小题,20分)

- 17. 初中数学"二次函数"(第一课时)设计如下教学目标:
- ①结合具体情境体会二次函数的意义,理解二次函数的有关概念.
- ②经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型,能够表示简单变量之间的二次函数关系.

③能够利用二次函数的相关知识解决简单的实际问题与数学问题.

完成下列任务:

- (1) 根据教学目标①,设计至少三个问题,并说明设计意图;
- (2)根据教学目标②③,设计两个问题,让学生用二次函数的相关知识解决,并说明设计意图.
- (3)请结合自己的已有经验谈一谈对这一堂课的建议.

想获取更多免费备考资料可关注福建教师资格网

(http://www.fjjszg.cn/)或关注公众号:福建省教师网。

如何获取答案及解析?

- 1. 【关注公众号,回复答案即刻获取模拟卷参考答案及解析】
- 2.回复咨询,与老师在线交流